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1.0 SUMMARY 

A finite difference method for solving the unsteady transonic flow about harmonically 
oscillating wings is investigated. The procedure is based on separating the velocity potential into 
steady and unsteady parts and linearizing the resulting unsteady differential equation for small 
disturbances. The differential equation for the unsteady potential is linear with spatially varying 
coefficients and with the time variable eliminated by assuming harmonic motion. 

The work of this report is a direct extension of earlier studies and includes extension of a 
program using a direct solution procedure to include coordinate transformations for swept and 
tapered planforms and modification of the program to work on the new generation of vector 
computers with very large memory capabilities. 

The main results of the study are- 

1. 

2. 

3. 

4. 

Rederivation of the difference equations for harmonic transonic flow to include a coordinate 
transformation for swept and tapered planforms. 

Development of programs for three-dimensional planar configurations (including thickness) 
for the CRAY-XMP at Boeing and the CYBER VPS-32 system at the NASA Langley Research 
Center at Hampton, Virginia. 

An investigation of the effect of the location of the outer boundaries on accuracy for very 
small reduced frequencies. 

Application of the developed program to the flutter analysis of a rectangular wing of aspect 
ratio 3.0. 

1 



2.0 INTRODUCTION 

The development of an efficient and practical procedure for calculating unsteady transonic air 
forces for use in flutter analyses continues to be of interest to the aircraft industry. The work of this 
report extends a series of studies into a finite difference solution procedure applied to the small 
disturbance velocity potential equation, which has been linearized by assuming simple harmonic 
motion. These studies, which have been documented in References 1 through 8, have resulted in a 
pilot program that has been used successfully for the two-dimensional, typical section problem. 
Extension of the two-dimensional program to three dimensions, with the corresponding increase in 
the number of problem unknowns, resulted in a program that was very expensive to run. 

The studies described in this report include the derivation of a coordinate transformation for 
swept and tapered wings, the rewriting of a CRAY-1 program for use on the CRAY-XMP and the 
NASA Langley VPS-32 computer system in order to reduce running cost, correlation studies for 
the new pilot program for small values of reduced frequency, and application of the new program to 
a flutter example. 

The development and characteristics of the new pilot program are discussed in Section 5.0. 

The coordinate transformation, discussed in Section 6.0 and derived in the Appendix, aligns 
the mesh points with the leading and trailing edges of a planform. It is essentially a shearing 
transformation in the plane of the planform, but with additional terms in the expressions for the 
streamwise variable so that continuity of second derivatives is maintained across the planform 
edges. 

Several correlation studies are presented in Section 7.0. Generally good agreement is shown 
between pressure distributions from O P ” 3  and a kernel function program for planforms of 
vanishing thickness. An example is presented for a wing of finite thickness. Also, it is shown that 
the boundaries of the finite difference solution region must be moved away from the wing as the 
reduced frequency is decreased in order to maintain accuracy. 

The application of the program to the flutter analysis of a wing with finite thickness is 
presented in Section 8.0. 

Finally, the authors would like to acknowledge the valuable contributions of Dr. Elizabeth L. 
Yip in the development of the solution routines, of Dr. Michael B. Bieterman in converting the 
OPTRAN3 code for the CRAY-XMP to code for the VPS-32 system, and of Dr. Robert M. Bennett to 
the calculations for the flutter example. 
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3.0 ABBREVIATIONS AND SYMBOLS 

Amplitude of wing oscillations 

Root semichord 

Pressure coefficient, ( p - p 0 ) / ( V 2 p 0 U ~ )  where p is the local pressure, po the freestream 
static pressure, and po the freestream air density 

Frequency in hertz 
- 

Undisturbed wing or airfoil shape 

Unsteady contribution to wing or airfoil shape 

x,y,z subscripts and indices for points in the mesh 

Reduced frequency based on semichord, 2nfb/U; same as w 

Transonic parameter,' (1 - M2>/M2d 

Kernel function program for two-dimensional flow by Bland (ref. 18) 

Leading edge 

Freestream Mach number 

Mass of wing excluding support shaft 

u2 /e  - idy - 1)cpom 

Generalized force due to pressure from the nth mode weighted with the deflection of 
the mth mode 

Kernel function program for three-dimensional flow by Rowe, Redman, and Winther 
(refs. 14 and 15) 

Wing semispan 

Time in units of blu 

Trailing edge 
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PO 

91 

w 

WO 

Freestream velocity 

Scaled and nondimensional coordinates for two- and three-dimensional problems 
(x = xdb, Y = pydb, z = ptdb) 

Nondimensional and unscaled coordinates for two- and three-dimensional problems 

Ratio of specific heats for air 

Jump in pressure coefficient across airfoil or wake per unit amplitude of oscillation 

Jump in cpl at plane of wing or vortex wake 

I Jump iniql at wing trailing edge 

Thickness ratio 

cam>” 

wM/(l-M2) 

Scale factor of yo and zo, p = 6’ M” ; also mass ratio, Md(rb:sp) 

Fraction of semispan 

Sweptwing coordinates 

Air density 

Freestream air density 

Complete, scaled perturbation velocity potential; also used for the unsteady potential 
in finite difference equations with subscripts 

Steady scaled perturbation velocity potential 

Unsteady scaled perturbation velocity potential 

Frequency in radians; also reduced frequency, same as k 

Reference frequency in radians. For the example in Figures 20 and 21, w0 is the 
second natural frequency of the model 
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SUBSCRIPTS 

Flutter value 

Freestream value 

r Root or reference value 0 
a 
a 
a 
a 
a 
a 
e 
0 
0 
0 
a 
a 
e 
0 
e 

7 



4.0 FORMULATION AND SOLUTION 

Since the mathematical derivation of the method for the solution of the unsteady velocity 
potential for the flow about a harmonically oscillating wing is presented in Reference 1, the discus- 
sion here will be limited to a brief outline of the procedure for two dimensions. The complete 
nonlinear differential equation was simplified by assuming the flow to be a small perturbation 
from a uniform stream near the speed of sound. The resulting equation for unsteady flow is 

[K - (Y - 1) cpf - (Y + U-%] cpxx + v y y  - (2cp*f + c p f , ) / E  = 0 (1) 

where K = (1-M2>/(M2d, M is the freestream Mach number of velocity Uo in the x-direction, 
x and y are made dimensionless to the semichord b of the airfoil and the time t to the ratio 
b/Uo. With the airfoil shape as a function of time defined by the relation 

the linearized boundary condition becomes 

The quantity 6 is associated with properties of the airfoil (such as maximum thickness ratio, 
camber, or maximum angle of attack) and is assumed to be small. The coordinate y is scaled to the 
dimensionless physical coordinate yo according to 

and E is given in terms of 6 by 

E = (6/MIa3 

The pressure coefficient is found from the relation 

The preceding differential equation is simplified by assuming the velocity potential to be 
separable into a steady-state potential and a potential representing the unsteady effects. We write 
for the perturbation velocity potential 

and for the body shape 

PRECEDING PAGE BLANK NOT FILMED 
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Since the steady-state terms must satisfy the boundary conditions and the differential equa- 
tion in the absence of oscillations, we obtain 

with 

'pay = fo(x), y = 0, - 1 5 x 5 1  (5 )  

On the assumption that the oscillations are small and products of p, may be neglected, equa- 
tions (4.1) and (4.2) with the aid of equations (4.4) and (4.5) yield 

[[K - (Y + l)POJPl& + Plyy - ( 2 i d E )  + q91 = 0 (6) 

where 

q = W2/E - iw(y - l)cpo, 

subject to the wing boundary conditions 

= fix + iuf1 (x), y = 0, - 1 l X l l  (7) ‘olu 

The boundary condition that the pressure be continuous across the wake from the trailing 
edge was found in terms of the jump in potential Apl to be 

(8) ‘ 
- iw (x  - xfe) Acp1 = Acp1,e 

where Acplfe is the jump in the potential at x=x ,  just downstream of the trailing edge and is a 
determined to satisfy the Kutta condition that the jump in pressure vanish at  the trailing edge. 
The quantity Acpl is also used in the difference formulation for the derivative p, yy to satisfy conti- 
nuity of normal flow across the trailing edge wake. 

0 For the set of difference equations to be determinate, the boundary conditions on the outer 
edges of the mesh must be specified. In the original unsteady formulation, these boundary condi- 
tions were derived from asymptotic integral relations in a manner parallel to that used by Klunker 
(ref. 9)  for steady flow. A later formulation (ref. 3) applies an outgoing plane wave boundary 
condition to the outer edges of the mesh. This boundary condition is numerically simpler to apply 
and is equivalent to the first-order nonreflecting boundary conditions derived by Engquist and - - _  
Majda (ref. 10). 

A computer program for solving the steady-state transonic flow about lifting airfoils based on 
equations (4.4) and (4.6) was developed by Cole, Murman,  and Krupp (refs. 11 
and 12). 

10 



The similarity of the unsteady differential equation to the steady-state equation suggests that 
the method of Cole, Murman, and Krupp should be an effective way to solve equation (4.6) for the 
unsteady potential p,. Note that equation (4.6) is of mixed type, being elliptic or hyperbolic when- 
ever equation (4.4) is elliptic or hyperbolic. Central differencing was used at all points for the y 
derivative and all subsonic or elliptic points for the x derivatives. Backward (or upstream) differ- 
ences were used for the x derivatives at all hyperbolic points. The preferred numerical approach to 
solving the resulting large-order set of difference equations is a relaxation procedure, which per- 
mits the calculation to be made as a sequence of relatively small problems. However, as discussed 
in preceding NASA reports by the authors (refs. 3 and 41, a significant problem of solutjon conver- 
gence with the relaxation procedure was encountered that severely limits the range of Mach num- 
ber and reduced frequency for which solutions may be obtained. Accordingly, an out-of-core solver 
(ref. 8) was developed to solve the complete set of difference equations simultaneously, which for 
two-dimensional flow is relatively efficient. 

The size of practical three-dimensional problems is such that the program of Reference 8 was 
too expensive for practical application. In Reference 8, the authors explored alternatives to the 
direct solution procedure and ways of making the direct solution more efficient. The conclusions 
from th i s  work provided the  motivation for work discussed in  the  following 
sections. 

11 



5.0 THE PILOT PROGRAM FOR LIFTING SURFACES 

The initial block of work was to develop a pilot program for three-dimensional lifting surfaces 
utilizing the harmonic procedures for unsteady transonic flow developed in References 1 through 8. 
This program was to be designed for use on the CRAY-XMP and was to be a refinement of a pilot 
program developed for the the CRAY-1. This initial program was developed and tested for a 
machine with 1 million words of core storage and was written during the installation at Boeing of 
both the CRAY hardware and software. The Boeing CRAY-XMP has 4 million words of core storage, 
which permits working with larger blocks of data in memory. Larger blocks mean a smaller 
number of longer do-loops; vectorizing the longer do-loops reduces execution time. Another key 
element of the XMP is its solid-state disk (SSD) with some 128 million words of storage and a data 
transfer rate 100 times that of a conventional disk. These were significant elements in the 
motivation to refine a program for which VO requirements accounted for 75% of the run cost. 

After completion, the CRAY-XMP version of the pilot program was modified for use on the 
VPS-32 system at NASA Langley. Tkie CRAY-XMP version, for example, included calls to a number 
of subroutines in VectorPak and BCSLIB. VectorPak is a subroutine library of carefully optimized 
mathematical subprograms for the CRAY-XMP and some of the other vector computers. BCSLIB is 
a comprehensive, general-purpose library of mathematical, statistical, and utility subprograms. 
Since BCSLIB and VectorPak are not available on the NASA Langley VPS-32 system, OFTRAN3 
was augmented with FORTRAN equivalents of the required subroutines. Conversion was 
accomplished in a relatively direct fashion, and the resulting program is not as efficient on the 
VPS-32 system as it is on the CRAY-XMF! Relative run times are discussed below in Section 5.2. 

5.1 PROGRAM CHARACTERISTICS 

The program is set up for a single, noninterfering surface with straight leading and trailing 
edges. It includes a coordinate transformation to align the computational mesh with the leading 
and trailing edges of swept and tapered planforms. It includes capabilities for calculating the 
downwash for vertical translation, pitch, flapping, or full span control surface modes. However, 
with relatively simple changes in the subroutine that calculates the downwash distribution 
(subroutine AIRFOIL), the program can be adapted to run user-supplied modal deflections and 
slopes (as was done for the flutter calculation in sec. 8.0). The modal information is supplied to the 
program only at the mesh point locations. No specific information is provided for discontinuities in 
slopes in the deflection pattern such as occur in (for example) a control surface mode. However, if 
mesh points are concentrated about the hingeline, the proper gradients in the pressure pattern will 
be observed. The program has no means for calculating slopes from input deflections. 

Program output includes pressure distributions and sectional and generalized forces. 
Relatively simple changes to the subroutine CPR would permit obtaining the pressure or force 
data in nearly any form desired. 

Care must be taken in calculating sectional generalized forces from pressure distributions 
defined with a limited number of finite difference points. For configurations with subsonic leading 
edges and thus pressure distributions that are singular at the leading edge, use of trapezoidal 
integration may significantly underestimate the total sectional force. In OPTRAN3, an assumed 
pressure distribution with a square root singularity is used in the vicinity of the leading edge. The 
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second mesh point aft of the leading edge, x(I0 + 11, is used as a critical point. The force due to the 
pressure ahead of this point is obtained analytically using the formula 

x(I0 + 1) + 1 
./ x + l  AE,  = AE, (x(I0 -i- 1)) * 

The force due to the pressure aft of dI0  + 1) is obtained using trapezoidal integration. Using 
this procedure, results from OPTRAN3 correlated well with results from RH04 (see sec. 8). 
Pressure and sectional force data were not available for correlation with a finite thickness case. 
Care should be taken in applying this procedure to thick wings with blunt leading edges for which 
the usual rapid rise in pressure at the leading edge may be attenuated. 

For purposes of this report, the number of points in a mesh is given in terms of a full mesh 
about the right-hand side of the planform. Thus, an IMAXxJMAXxKMAX mesh has IMAX 
points in the x-direction (streamwise) with x(1) on the upstream boundary and x(IMAX) on the 
downstream boundary, JMAX points in the y-direction (spanwise) with y(2) on the planform 
centerline, y(3) = -jW, and yVMAX) on the outboard boundary, and KMAX points in the 
z-direction (vertical) with dl) on the lower boundary and dKMAX) on the upper boundary. A 
full-mesh solution for problems without symmetry about t he  x - y  plane h a s  
(IMAX - 2) x (JMAX - 2) x (KMAX - 2) unknowns. A half-mesh solution, for problems with 
symmetry about the x - y  plane and for which only points below the planform need be included, has 
(IMAX - 2) x (JMAX - 2) x (KMAW2 - 1) unknowns. 

In similar fashion, for two-dimensional problems, an IMAX x KMAX mesh would have 
(MAX - 2) x (KMAX - 2) unknowns for a full solution and (IMAX - 2) x (KMAWB - 1) unknowns 
for a half-mesh or symmetric solution. 

All the examples in this report are problems with symmetry about the x - y  plane and thus are 
half-mesh solutions. 

5.2 PROGRAM RUNNING TIME 

The new program, when run on the CRAY-XMP, is significantly more efficient than the CRAY-1 
version. The cost of a typical run for the new program in CPU seconds is one-tenth that of the 
original program. Also, due to the use of the SSD, the w3 cost for the refined program is 25% of the 
total run cost according to the Boeing cost algorithm rather than the 75% for the CRAY-1 program. 

The running time for the new program on the CRAY-XMP for a half-mesh solution using 
48 x 17 x 32 mesh (10,350 unknowns) is about 120 CPU seconds. The number of right-hand sides 
(the number of mode shapes) has a small effect on the running time. The running time increases 
roughly as a cubic of the increase in the number of spanwise and/or vertical points. The running 
time variation is roughly linear with increasing points in the streamwise direction. A plot of 
running time versus the number of points spanwise is shown in Figure 1, which generally confirms 
these variations in running times. The cubic curve is based on JMAX - 2, where JMAX is defined 
as the number of spanwise points in the mesh including one point on the wing centerline and one 
point to the left of the centerline. 

The VPS-32 version of the program requires about ten times more CPU seconds than the 
version on the CRAY-XMP. 
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6.0 A TRANSFORMATION FOR SWEPT AND TAPERED PLANFORMS 

A very desirable characteristic of finite difference programs for three-dimensional lifting 
surfaces is the matching of the calculation mesh to the planform geometry of swept and tapered 
wings. This is particularly important in the vicinity of surface leading edges, where there are large 
gradients in the pressure distributions, and for highly tapered wings, where, with rectangular 
grids, it is difficult to obtain a practical number of points along both the root and tip chords. 

The coordinate transformation derived in the Appendix and included in the pilot program 
generally aligns mesh points with the leading and trailing edges of a swept and tapered planform 
using a stretching and shearing algorithm. The calculation volume is divided into three regions by 
vertical planes through the leading and trailing edges of the planform. These extend from the 
centerline to the side boundary. The upstream and downstream boundaries are perpendicular to 
the root plane. 

The transformation is set up for wings with straight leading and trailing edges. For wings with 
swept edges, the apex at the centerline is rounded to remove singularities in the distributions. The 
rounding is accomplished so that the new edges have continuous second-order derivatives with 
respect to the spanwise variable. 

The swept edges are also extended to meet the outside boundary at right angles. Here again 
the functions are made continuous in the second derivative with respect to the spanwise variable. 

Generally, this transformation conforms to the suggestion of Goorjian and Guruswamy in 
Reference 13 and used in the XTRAN3 programs. The transformations used here for the upstream 
and downstream regions employ additional nonlinear terms in the expressions for the streamwise 
variable. 

A complete derivation of the transformation and its incorporation into the finite difference 
equations is presented in the Appendix. Section A. 1 presents the basic transformation equations. 
Implementation requires definition of the planform leading and trailing edges from the wingtip to 
the outer (side) mesh boundary. This may be accomplished in an automated fashion using the 
equations presented in A.2, which are included in OPTRAN3. However, this procedure will work 
well only if the planform has a moderate taper ratio. The problem is that the location of the outer 
boundary is determined by intersection of extensions of the edges. Thus if the taper ratio is large, 
the outer boundary will be too close to the wingtip; conversely, if the taper ratio is small, the outer 
boundary will be too far from the wingtip. Also, the procedure of A.2 assumes the planform edges 
are straight and without breaks. As an alternative, the leading and trailing edge extensions may 
be worked out by hand and entered as data input. For OPTRAN3, this means modifying 
subroutine PLNFORM to read the edge extension data rather than calculating it. The 
transformation of A.l is applied to the equation for harmonic transonic flow in A.3.1, and the 
resulting finite difference equations are derived in A.3.2 and A.3.3. 
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7.0 CORRELATION OF PRESSURE DISTRIBUTIONS 

Validation of the new pilot program was accomplished by matching results from the new pilot 
program for OPTRAN3 with distributions from a reliable kernel function program, RH04 (refs. 14 
and 15). Discussions in this section will center mainly on correlation with RH04. For planforms of 
vanishing thickness and thus linear flow, results from OFTRAN3 and RH04 should match 
exactly. 

Section 7.1 presents an example for a swept and tapered planform. Section 7.2 discusses the 
effects of the location of the outer boundaries for small values of reduced frequency. 

7.1 A SWEPT AND TAPERED WING EXAMPLE 

Pressure distributions are presented in this section for a swept and tapered wing of vanishing 
thickness. A sketch of the planform is shown in Figure 2. The surface studied has a 30-deg swept 
leading edge and a taper ratio of 0.5, with a semispan equal to 1.25 semichords. The calculations 
were made for a Mach number of 0.8 and with the wing oscillating in pitch about the root midchord 
at  a reduced frequency of 0.06 based on the root semichord. The results should match pressure 
distributions from a linear solution. For this study, results are correlated with distributions from 
the RH04 program described in references 14 and 15. 

Results from OPTRAN3 correlate well with corresponding results from RH04. Examples of 
this correlation for the root and tip (7 = 0.8) chords are shown in Figures 3a through 4b. 
Distributions are shown from RH04, and from OFTRAN3 for half-mesh solutions using a 
3 0 x 1 2 ~ 2 0  mesh and a 4 4 x 1 4 ~ 3 2  mesh. For the root chord, all three calculations include 
rounding of the leading and trailing edge. For the real part, there is little difference between the 
two OPTRAN3 calculations and RH04. Both meshes do a good job of predicting the leading edge 
singularity. For the imaginary part, the finer mesh does a noticeably better job of matching the 
RH04 results over the the forward part of the wing. For the 80% spanwise chord, the finer mesh 
again does a better job of matching RH04. Although the difference is marginal for the real part, it 
is significant over the leading edge region for the imaginary part. 

For both meshes, the upstream and downstream boundaries were at x = - 2.0 and 3.0 and the 
side boundary was at y = 4.5. The upper and lower boundaries were at t = + 4.5 for the fine mesh 
and z = + 3.0 for the coarse mesh.* In view of the subsequent difficulties with the location of the 
mesh boundaries at low reduced frequencies, results might well be improved by moving the 
boundaries further out. This point will be discussed in the next section. 

7.2 A FINITE THICKNESS EXAMPLE 

Pressure distributions are presented in this section for a rectangular wing with a 10% thick 
parabolic arc airfoil section. The semispan is 1.5 times the semichord, and results are presented for 

* The x, y ,  and z values are given here in units of root semichord. Thus the upstream boundary 
is 1/2 root chord length in front of the upstream boundary at the root; the downstream boundary is 
one root chord length aft of the trailing edge; and the spanwise boundary is four semispans from 
the root. 



M = 0.9 and k = 0.06. The mesh used is 44 x 12 x 32 with the boundaries relatively close to the 
wing: - 2.0 I x 5 3.0, y I 4.5, -4.5 I z s 4.5. The flow condition is symmetric (a! = 0) and the 
wing is oscillating in pitch about the leading edge. The steady velocity potential distribution was 
calculated with XTRAN3S (ref. 16). Computer resources required are essentially the same as 
required for the flat plate case. Results are presented in Figures 4a and 4b for the root section and 
for the 80% spanwise station. We do not have matching results from another source, and thus the 
most that we can say is that the results appear reasonable. We have run the OPTRAN3-AD1 
program (OPTRAN3 with an alternating direction solution package, ref. 8) with essentially the 
same results. It should be noted that other three-dimensional correlation studies are presented in 
References 4 through 8. It is surprising to find a blip in the curves of Figures 4a and 4b at the sonic 
line, where the flow is changing from subsonic to supersonic flow on the forward half of the section. 
Changing the Mach number and the point distributions (slightly in both cases) made no difference 
in this blip. On looking back a t  the calculations in Reference 8, hints of a blip appear in the 
two-dimensional results for the NACA-64A010 airfoil (see figs. 8 and 9 of ref. 8) but not in the 
three-dimensional results for the circular arc airfoil. 

7.3 SENSITIVITIES TO BOUNDARY LOCATIONS 

Initial results for the flutter analysis indicated a problem with the generalized forces for small 
values of reduced frequency, in this particular case for a reduced frequency of 0.01 based on the 
root semichord. It is possible that this is really a problem of Mach number as well as reduced 
frequency since the solution procedure was found to be sensitive to the parameter 

X = wM/(1 - M2) 

In this study, only sensitivities to reduced frequency have been examined. The concern was that 
the imaginary parts of the generalized forces were not going to zero as the reduced frequency went 
to zero. Indeed, correlation of the imaginary part of the pressure between OPTRAN3 and RH04 
was very poor at low values of k. 

The problem appeared during the flutter analysis of the wing in Section 8.0 and may most 
easily be illustrated by plotting the imaginary part of the Q22 term (the generalized force due to the 
pressure from the second mode weighted with itselfl versus reduced frequency. The second elastic 
mode of this wing, a rectangular wing with an aspect ratio of 3.0, is essentially a pitch mode. The 
imaginary part of the QZ2 term should go to zero as k goes to zero. Results for the rectangular wing 
of aspect ratio 3.0 and of vanishing thickness are presented in Figure 5 for both OF’TRAN3 and a 
reliable three-dimensional kernel function program, RH04. It is seen that the results from RH04 
do tend to zero as k goes to zero, while those from OPTRAN3 as calculated with a relatively small 
finite difference volume do not. However, even at k = 0.1 the two imaginary parts of QZ2 are 
relatively close together and, although not shown in Figure 5 ,  become even closer at higher values 
of reduced frequency. 

For reference purposes, the pressure distributions for the second mode for M = 0.8 and k = 0.3 
from OFTRAN3 and RH04 are shown in Figures 6a through 6d. OFTRAN3 results are shown for 
two different meshes, both with a 44 x 14 x 32 mesh and both with the side boundary at y = 4.5: a 
“small” mesh with the upstream boundary at x = - 2.0, the downstream boundary at x = 3.0, and 
the upper/lower boundaries at  z = +4.5, and a “large” mesh with the upstreaddownstream 
boundaries at x = + 8.0 and the upper/lower boundaries at t = + 8.0. Results are presented for two 
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chords, the root chord and a chord near the tip. First, for this particular case, the correlation 
between OPTRAN3 and RH04 is good for both the “small” and the “large” meshes and for both 
chords. Moreover, the two OPTRAN3 results are noticeably more like each other than either of 
them is like the RH04 result. Thus, in this case, the larger solution area does not affect the result. 

The phenomenon of deteriorating accuracy as the reduced frequency went to zero had been 
noted in the two-dimensional problem by Siedel, Bennett, and Whitlow (ref. 17) and was resolved 
by moving the upstream boundary further upstream. This was immediately tried on the 
three-dimensional problem but with only limited success. It ultimately proved that all the mesh 
boundaries had to be moved out to obtain the desired correlation between OPTRAN3 and RH04. 

The next part of the discussion centers on results for a two-dimensional airfoil section of 
vanishing thickness oscillating in pitch about the leading edge. The results will be presented in 
terms of the pressure distributions. It is recognized that, for small k values, the amplitudes of the 
imaginary parts of the generalized force are small relative to the real part. Indeed, the difference 
in imaginary parts would not be noticeable if they were plotted on the same scale as the real parts. 
However, in light of the importance of the imaginary part of Q22 having the proper behavior as k 
goes to zero, it is of interest to investigate this problem in some detail. Due to the computer costs 
entailed in running the three-dimensional program, it was decided to begin by comparing results 
from OPTRANB and a well-tested two-dimensional kernel function program by Bland (ref. 18), 
hereafter called KFB. 

Figures 7 through 10 present results for M = 0.8 and k values of 0.3 to 0.001 for a 
“reasonable-sized” two-dimensional mesh: a 72 x 60 point pattern (see sec. 5.1 for definition of. 
mesh sizes) with 1x1 c 10 and lyl < 10. The intent is to show (1) the relative amplitudes of the real 
and imaginary parts and how they change with k value, and (2) how the correlation between 
OPTRANB and KFB degrades as the k-value is reduced while the solution area is held constant. 
The correlation at k = 0.3 (fig. 7) is excellent. The falloff in correlation at k = 0.1 (fig. 8) is barely 
discernible. At k = 0.01 (fig. 9), the real parts still coincide, but there is a noticeable difference in 
the imaginary parts. This is the expected behavior where, for a given finite difference mesh sized 
to provide good answers at nominal values of k, accuracy is lost at very small values of k. However, 
at k = 0.001 (fig. lo), the pressures from the two methods appear to again coincide. This latter 
result is considered fortuitous for reasons illustrated in Figure 11, which presents plots of the 
imaginary part of the pressure for several upper/lower boundary locations. In this case, the 
Correlation between OPTRAN2 and the KFB method decreases as the boundary is moved out, 
although not in the expected sequence. Here, the correlation is best with the upperflower 
boundaries at y = + 10, significantly worse with the boundaries a y = + 50, and then somewhat 
better with the boundaries at y = + 100. This inconsistency is probably due to the need for more 
mesh points as the boundaries are moved out. Finally, it is noted that in this particular case 
(k = 0.001) the imaginary parts are very small and the differences discussed may not be very 
significant. 

An example of the pressure distribution from OPTRAN2 moving across the results from the 
KFB method is shown in Figure 12 for k = 0.01. Here, the boundaries are moved from y =  + 10 
(the OPTRANB result is below that from the KFB method) to y = +30 (the OPTRAN2 result is 
above that from the KFB method), to y = + 100 (little change in the OPTRAN2 result). When the 
upstreaddownstream boundaries are set at x = +40 and with the upperflower boundaries at 
y = +60, the OPTRANB results correlate with the KFB results very well. 
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A three-dimensional example is presented in Figures 13a through 14b for a full-span, aspect 
ratio 3.0 rectangular wing of vanishing thickness and oscillating in pitch about the leading edge. 
Pressure distributions for OPTRAN3 for four different mesh areas and for RH04 are presented for 
two chords, the root chord and for < = 0.885. Figures 13a and 13b present both the real and 
imaginary parts of the pressure, showing the relative amplitudes of the two parts and with very 
good correlation between all five sets of results for the real part. The RH04 results, represented by 
the solid line, are "buried" in the curves for the three large-area solutions for the real part, and are 
the uppermost curve for the imaginary part. This latter curve may be seen more clearly in Figures 
14a and 14b, which show the imaginary part of the pressure to a larger scale. As the outboard 
boundary is moved out by adding mesh points (the original spanwise point distribution is left 
unchanged) the imaginary part of the pressure moves toward the RH04 results. 

The reasons for needing to move the boundaries out for very small values of reduced frequency 
is not completely clear. It would seem logical that the boundaries must be far enough out and 
enough mesh points must be used so that the wave pattern in the potential distribution would be 
well defined. Samples of the two-dimensional velocity potential for k = 0.001 along a constant 
x-line are shown in Figures 15a and 15b for a column of points just aft of the leading edge. The 
pressure is calculated by extrapolating the velocity potential to the wing surface (z = 0) along each 
column of points and then calculating the pressure coefficient as 

The pattern is shown out to t = 16 in Figure 15a and then an enlarged section -2.0 < z < 0 is 
shown for Figure 15b. Although the patterns do vary as the upperflower boundaries are moved 
away from the airfoil, the differences over the first two points (which are the points used in the 
interpolation) are very subtle. One would not expect to see the differences in the pressure 
distributions of Figure 11, which are calculated from the potential distributions of Figure 15b. 

Generally, these examples show that, for small values of reduced frequency, the outer 
boundaries of the solution mesh must be much further from the wing planform than for larger 
values of k. There will always be a dilemma of using enough mesh points to properly define the 
waves in the velocity potential field while keeping the number of points to a minimum to reduce 
computer costs. It is practical to vary the location of the outer boundaries with k value. However, it 
is recommended that the meshes be evaluated by correlating results from OPTRAN3 and a kernel 
function program such as RH04. 

In conclusion, compared to higher values, lower values of reduced frequency require more 
remote boundaries and larger numbers of mesh points, resulting in larger computer costs, in order 
to retain accuracy. 
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8.0 A FLUTTER EXAMPLE 

OPTRAN3 was applied to the flutter analysis of the rectangular wing studied by Cole in 
Reference 19. This wing, with an aspect ratio of 1.5 and a 64A010 airfoil section, had been tested in 
the LaRC 0.3m Cryogenic Wind Tunnel (TCT). The model consisted of a rigid wing with an integral 
flexible support that was cantilevered from the wind tunnel wall. Experimental flutter points were 
obtained over the Mach number range of 0.5 to 0.9. There were no signs of transonic flow effects on 
the flutter results at  the higher Mach numbers. Analytical results were obtained using the 
NASA-Langley Flutter-Analysis-System (ref. 20), FAST, which uses subsonic lifting surface theory 
analogous to RH04 (ref. 21) to calculate the aerodynamic forces. The flutter analysis was 
performed using a combination of calculated and measured properties. A set of four natural modes 
was used as generalized coordinates. The FAST results ". , . predicted the experimental flutter 
dynamic pressures rather well, with analytical results ranging up to 5 percent nonconservative at 
the lowest Mach number tested and 5 percent conservative at the higher Mach numbers tested" 
(ref. 19). 

To demonstrate its application of OPTRAN3 to the flutter problem, OPTRAN3 was used to 
calculate a flutter point at M = 0.8. The calculations were made on the NASA-Langley VPS-32 
computer system using NASA-supplied modal and velocity potential data as input. The resulting 
generalized forces were used in FAST for a V-g type flutter solution. 

The flutter analyses were made using the first four natural modes as generalized coordinates. 
The modal deflections and slopes were interpolated from the NASA structural grid to the 
aerodynamic control points used by OPTRAN3. A steady state velocity potential distribution, 
calculated with the NASA-Langley CAP-TSD program (refs. 22 and 23), was also interpolated for 
input. The effects of a thickness distribution are included in OPTRANS through this steady 
potential, which is used in calculating the spatially varying coefficients of the finite difference . 
equations. For the current problem, a set of generalized forces for five k-values over the range of 
0.01 to 0.2 with forces for intermediate k-values being found by interpolation. A separate 
OPTRAN3 run is required for each k-value. However, each run includes all the mode shapes, and 
additional modes do not significantly effect the cost of a run. Computer costs, then, are linear with 
respect to the number of reduced frequencies for which generalized forces must be calculated, but 
are nearly independent of the number of generalized coordinates used. 

The steady pressure distribution calculated from the velocity potential used as input to  
OPTRAN3 is presented in Figures 16 and 17. The steady chordwise pressure distribution at the 
wing root shown in Figure 16 has a small supersonic region centered about a point 40% of the 
chord aft from the leading edge, and there is no discernible shock at the aft end of the supersonic 
region. Thus the flow is nearly subsonic at the root, and this pattern holds outboard as shown by 
the distribution for the complete planform in Figure 17. 

Figures 18a through 18d present the generalized air forces for the first two modes. Here, the 
kernel function forces from FAST are compared with forces from OPTRANS both with and without 
thickness. Generally, the three curves lie very close together for all four generalized forces and for 
both the real and imaginary parts. Differences between the two flat plate cases (FAST and 
OPTRANS without thickness), and small inconsistencies between the flat plate and with-thickness 
results, such as QI2 (fig. 17) where FAST and OPTRAN3 with-thickness results match exactly and 
the forces from OPTRAN3 without thickness are slightly different, are probably caused by the 
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limited number of mesh points used as a result of practical restrictions on available computer 
resources. In this case a relatively coarse grid of 48x17~32 was used. In addition, due to the low 
k-values at which flutter was expected, it was important to have the boundaries of the finite 
difference mesh as far from the planform as possible. After consideration of the number of mesh 
points to be used, the grid boundaries were set at 

-10.0 I x I +10.0 y I 12.75 -10.0 I E I +10.0 

Improved correlation with the FAST results would be expected from using more mesh points for the 
existing solution volume. Even better correlation would be expected if, with the increased number 
of mesh points, the boundaries were moved out even further. 

As would be expected from looking at the generalized forces, the flutter results for the three 
calculations also match each other very closely. A large variation in the flutter-reduced 
frequency-with-mass ratio (defined as M,/(+b*s p))  is shown in Figure 19, with the critical k-value 
for the problem being solved here of order 0.05. Figures 20 and 21 present the flutter- speed index 
(defined as UF/(b w 4)) and flutter frequency ratio (defined as +/a) versus mass ratio. Both the 
flutter speed index and the frequency ratio are relatively insensitive to the mass ratio. The 
exception is the flutter speed index for low values of reduced frequency, which shows the expected 
rapid increase in index at very small values of mass ratio. 

The curves of flutter speed index versus mass ratio are smooth and essentially parallel to each 
other. Assuming the FAST results match the experimental results, OPTFtAN3 without thickness 
provides a flutter speed index curve that is between 2% and 3% nonconservative, and OF'"RAN3 
with thickness provides a boundary that is between 1% and 2% nonconservative. 
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9.0 CONCLUSIONS 

The work for this report includes a derivation of a coordinate transformation for swept and 
tapered wings, reprogramming a CRAY-1 program for the CRAY-XMP and the Langley VPS-32 
computer system, an investigation of the effect on accuracy of the location of the outer mesh 
boundaries, and a sample flutter calculation of a low-aspect-ratio rectangular wing. 

The coordinate transformation for swept and tapered wings is essentially a shearing 
transformation in the plane of the planform, but with additional terms in the expressions for the 
streamwise variable so that continuity of second derivatives is maintained across the planform 
edges. This transformation was included in a pilot program and checked out on a planform of 
vanishing thickness. 

An existing CRAY1 program was rewritten to include the transformation described above for 
the Boeing CRAYXMP and the NASA Langley VPS-32 computer system. The CRAYXMP version, 
which made full use of the solid-state disk and the larger available core storage, proved to be 
nearly ten times more efficient than the CRAY-1 program. The VPS-32 version of the program was 
not nearly as efficient as the CRAY-XMP program. 

Even with these improvements in efficiencies, the CRAY-XMP program is marginally efficient 
for practical flutter evaluation problems. However, another version of the program developed by 
Rowe and Ehlers (ref. 21), in which improved boundary conditions permit a reduction in mesh size 
and (ultimately) in the number of unknowns, may provide a means for reducing computer costs to 
the point where these harmonic finite difference programs would be practical. 

A study was made of the effect of mesh boundary location on accuracy for small values of 
reduced frequency. It was found that for smaller k-values, the boundaries had to be moved further 
out to retain accuracy. Relatively good correlation was obtained down to k = 0.01 at  M = 0.8. 

Finally, the application of OPTRAN3 to a flutter analysis was demonstrated with calculations 
for a rectangular wing. 
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Figure 3a. Comparison of Pressure Distributions From OPTRAN3 and RH04 for a Swept 
and Tapered Wing of Vanishing Thickness; M = 0.8, k = 0.06, Root Chord, Real 
Part 
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Figure 3d. Comparison of Pressure Distributions From OPTRAN3 and RH04 for a Swept 
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Figure 4a. Pressure Distributions for a Rectangular Wing With a Parabolic Arc Airfoil 
Section; M = 0.9, k = 0.06, Real Part 
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Figure 6a. Comparison of Pressure Distributions From OPTRAN3 for Two Outer Boundary 
Locations and for RH04; Rectangular Wing, M = 0.8, k = 0.3, Root Chord, Real 
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Figure 6b. Comparison of Pressure Distributions From OPTRAN3 for Two Outer Boundary 
Locations and for RH04; Rectangular Wing, M = 0.8, k = 0.3, Root Chord, 
Imaginary Part 
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Figure 6d. Comparison of Pressure Distributions From OPTRAN3 for Two Outer Boundary 
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Figure 8. Comparison of Pressure Distributions From OPTRAN2 and KFB for a Typical 
Section; M = 0.8, k = 0.1 
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Figure 11. Comparison of Pressure Distributions From OPTRA N2 for Three Upper/Lower 
Boundary Locations and from KFB for a Typical Section; M = 0.8, k = 0.007, 
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Figure 12. Comparison of Pressure Distributions From OPTRA N2 for Several Outer 
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Figure 13a. Comparison of Pressure Distributions From OPTRAN3 for Four Outboard 
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Figure 14a. Comparison of Pressure Distributions From OPTRA N3 for Four Outboard 
Boundary Locations and From RH04 for a Rectangular Wing; M = 0.8, 
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Figure 15b. Comparison of Wlocity Potential Along a Column of Points From OPTRAN3 for 
Three Upper/Lower Boundary Locations for a Typical Section; M = 0.8, 
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Figure 16. Steady Pressure Distribution Over the Root Chord of a Rectangular Wing With a 
NA CA 64AO 10 Airfoil Section; Aspect Ratio = 3.0, M = 0.8 
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a a NACA 64A010 Airfoil Section; Aspect Ratio = 3.0, M = 0.8 
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Figure 18b. The Q2 Generalized Force krsus Reduced Frequency for a Rectangular Wing; 
M = 0.8, Aspect Ratio = 3.0 
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Figure 18c. The Q2, Generalized Force krsus Reduced Frequency for a Rectangular Wing; 
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Figure 18d. The Q,, Generalized Force krsus Reduced Frequency for a Rectangular Wing; 
M = 0.8, Aspect Ratio = 3.0 
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APPENDIX 

a 
e 
a 
a 

e 

A COORDINATE TRANSFORMATION SYSTEM FOR SWEPT AND 
TAPERED WINGS 

A.l THE BASIC TRANSFORMATION EQUATIONS 

In setting up mesh patterns for swept and/or tapered wings, it is desirable to set up grid pat- 
terns with the points aligned in some sense with the leading and trailing edges of the planform. 
The formulation that follows provides such a mapping system starting with a rectangular region in 
the physical x - y  plane. The planform leading and training edges are extended to the outer mesh 
boundary (fig. 22), and transformations between (x,y) of the physical plane and ( E , $  of the transfor- 
mation plane are defined for the regions upstream of the leading edge, between the leading and 
trailing edges, and downstream of the trailing edge. The transformations provide for continuous 
second derivatives everywhere. Also, the sharp apex at the root of a swept wing is rounded to avoid 
singularities at  the root plane. 

Let x = XLE(y) represent the leading edge of the wing, including its extension to  the outer mesh 
boundary. The semichord S(y) is also extended to the outer mesh boundary. Both XLE ( y )  and S(y) 
have continuous second derivatives. For the wing region, - 1 < f < 1, we use the transformation 

r l ' Y  (A-2) 

Solving equation (A-1) for x yields 

differentiating with respect to x yields 

Differentiating equation (A-3) with respect to y leads to 

0 = XLE + S ' Q ) . ( f +  1) + f Y / f ,  

(A-3) 

(A-4) 

e 



~ ~- - ~- ~~ 

e 
and e 

E , . / E ,  = - X L E  - S’cV)*(E+ 1) (A-5) 

For the mapping upstream of the wing, E c - 1, we consider a form that  has continuous second 
derivatives everywhere. Analogous to equation (A-3), we write 

x = x L E ~ )  + SO).([+ 1) + ( + l ) l f ( Y )  
E , + l  

We choose fo) so that at E = f , , x = x I .  Thus 

Downstream of the wing region where 4 > 1, we define a mapping of the form 

and determine g(y) so tha t  at ,$ = E,, we obtain x = xma. Then 
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(A-7) 

(A-8) 

(A-9) 



Differentiating with respect to x yields 

Differentiating with respect to y leads to 

In the finite difference operators, we need 

(A-11) 

and 
F = I/E, G = E y / E x  

G2 = G2/F 

which are defined by equations (A-4) to (A-12) above. The metrics are calculated from these 
expressions in the program. . 
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A.2 EXTENSIONS OF THE LEADING AND TRAILING EDGES OF THE WING WITH 
I SECOND-DERIVATIVE CONTINUITY 

To eliminate the singularity of the leading edge at the line of symmetry, y = 0, we turn the 
leading edge so that it has zero slope at the plane of symmetry. Thus we express the leading edge in 
the form 

(A-13) 

where y(2) = 0 is the plane of symmetry and y = y(N) = yN is the value of y at which the slope of 
the new curved edge matches the slope of the straight leading edge (see fig. 22). Thus we require 
X’&EcyN) = 0, since we consider wings with straight edges. Thus 

(A-14) 

Then 

At y = yN, we have qE = yNtan eLE = cl .  Differentiating equation A-15 then yields 

Hence 

The equation for the leading edge for the section near the plane of symmetry then becomes 

XLE = xLE(2) + c1 [Y2/yN-Y3/(3yi)] for 0 l y  SYN (A-16) 

At y = yN, we have from equation (B-49) of Reference 8 

Thus equation (A-16) at y = yN becomes 
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Figure 22. Parameters for Extending the Leading and Trailing Edges of a Swept and 
Tapered Wing 
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Similarly, for the trailing edge we write 

XTE(Y) = 1 + ( c 1 +  2c2) * [Y2/YN -Y2/(3YN) + yN/3] 

from which we obtain 

(A-18) 

(A-19) 

For y, >y>yN,  i.e., the  straight portions of the  leading and trailing edges, we have 
from equations (B-49) and (B-50) of Reference 8 

XLECV) = - 1 +cly (A-20) 

Extending the leading and trailing edges beyond the tip, we find that  the two edges intersect 
at y = y j  

or 

- 1 + c,y, = 1 + (C] + 2c*)yj 

or 

yi = - 1/c2 

Differentiating equations (A-17) and (A-14) with respect to y yields 

XLEdV) = CI (2t- f * )  9 = y/yN 

S’Q) = c 2 ( 2 t - I )  
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(A-22) 

(A-23) 

(A-24) 



~ 

e 
e 
a 

For yN < y < yr, we have 

X,,W = - 1 + CIY (A-25) 

(A-26) 

(A-27) 

S'O) = c2 (A-29) 

We extend the wing leading and trailing edges beyond the tip, y, ,  with a cubic in y .  Choose 
the pointy = y,,, to lie halfway between wing tip and the intersection of the linearly extended 
leading and trailing edges, or 

~m = (yr + r i ) / 2  = (yr - 1 / ~ 2 ) / 2  (A-30) 

Thus, for yr < y e ym, we write for the equation of the leading edge 

The mean slope is chosen for both leading and trailing edges at y = ym. Thus 

[(q +2c2) + c , ] / 2  = c, + c2 (A-32) 

Hence at y = y,,, 

XL ( ~ m )  = ci + 3b (ym-Yr)2 = ~1 + ~2 

or b = c2/ [ 3(Ym-Yf)2 ] 
Similarly, for the extension of the trailing edge we write 

3 
XTEW = 1 + ( C I  + 2 ~ 2 )  Y + bl ( Y - Y ~ )  

2 
XTEO = ( C , + 2 ~ 2 )  + 3 b I ( ~ m - ~ r )  = C , + C ~  

Thus, a t  y = ym, b, becomes 

b~ = - C 2 / [ 3 ( U , - Y r ) ' ]  = - b  

(A-33) 

(A-34) 

(A-35) 
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After substituting b and b , ,  the leading- and trailing-edge extensions then become for 
YI Y Yrn 

X,&) = 1 + (CI + 2C2)Y - c2(u -Y1) ’ / [  3(Y, -Yl)2 1 
For the semichord S(y) we obtain 

SO) = 1 +c2 [ ~ - ( U - Y ~ ) ’ / [ ~ ( Y , - Y , ) ~  I] 
Differentiating equations (A-36) and (A-38) with respect to y yields 

(A-37) 

(A-38) 

To simplify the outer mesh boundary conditions, we extend the leading and trailing edges 
for y = y,“ to  ye ,  the  outside boundary, by a third-degree polynomial, so that  slopes 
XIE = XiE = S’ = 0 at ye.  Thus we write 

XLEW = + o [(y-ye)’ - ( ~ t n - ~ e ) ’  1 
+ b [ (,-ye,’ - [ ~ m - ~ e ) ’  1 (A-41) 

e 
e 
0 
e 
a 
e 

0 
0 

a 

I where X L E M  is the x leading edge coordinate a t  y = y,“,the point halfway between y ,  and the e 
e 

point of intersections of the leading and trailing edges. From equation (A-36) we have 

XL&) = - 1  + C1Ym “2 (Yrn-Y1)/3 + a [(Y-Ye)2-(Ym-Ye)2] 
(A-42) 

+ b [(Y-U,)’>- ( ~ m - ~ e ) ’ ]  

At y ,  = y,, we must have XtE = c,  + cy,  or the average of the leading and trailingedge slopes at  
the wing tips. Thus 

I x,Eot,) = a[z(ym-Ye) + b [ 3 ( ~ m - ~ e j * ]  = cl+c2 (A-43) 

To match the second derivative at y = y,, we have from equations (A-39) 

XAotm) = 2C2/(Ym-Y,) 

I Thus from equation (A-42) we obtain 

or 

(A-44) 
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Eliminating b between equations (A-43) and (A-44) yields for a 

0 = (cI+ ~ 2 ) / ( ~ m  -ye) - c 2 / ( ~ m  - ~ r )  

From equation (A-44) we have 

3b(~rn -ye) = cz/(ym - Y I )  - 0 

or b = [ C 2 / P m  - ~ r )  - a] / 13jYtn 1 
Similiarly, for the trailing edge we write 

At y = ym, X’TE = cI  + c2 and equation (A-47) yields 

At y = y,,,, we have from equation (A-37) 

XTECY) = - 2 C 2 / ( Y m  9,) 
Thus 

0, +3b1 (ym-yej = - ~ 2 / ( ~ m - ~ i j  

Solving equations (A-44) and (A-45) for a, and bl yields 

and 

Let 

Then 

(A-45) 

(A-46) 

(A-47) 

(A-48) 

(A-49) 

(A-50) 

(A-51) 

(A-52) 

(A-53) 



i Let 

then 

Let 

then 

(A-56) 

For convenience, we summarize the results and include the first derivatives of the leading 
edge and semichord tha t  we will need in the calculation of the coefficients of the difference 
equations. 

For 0 <YC Y N  

S(y) = 1 + c , y , ( f ? - f 3 / 3 + 1 / 3 )  

X&) = c , (2 f - f ’ )  

(A-59) 

(A-60) 
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S’ (y )  = C 2 ( 2 f - f 2 )  (A-61) 



F Y f  ‘ 

(A-62b) 

(A-63) 

(A-64) 

(A-65) 

(A-66) 

(A-67) 

(A-68) 

(A-69) 

(A-70) 

(A-7 1) 

(A-72) 

(A-73) 

(A-74) 

(A-75) 
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~ ~~ 

(A-76) 

(A-77) 

(A-78) 

(A-79) 

(A-80) 

(A-81) 



e 
e 
a 

e 
e 
e 
e 
0 

e 
e 

0 
0 

A.3 TRANSFORMATION OF THE DIFFERENTIAL EQUATION 
FOR A SWEPT AND TAPERED WING IN TRANSONIC FLOW 

A.3.1 Basic Formulation 

The governing equation for the unsteady potential for harmonic motion of a wing in transonic 
flow is given by 

(A-82) 

where u = K -(y+ l ) ~ , .  The quantities po and v1 are the steady and unsteady perturbation 
potentials, respectively. The variables x, y,  z are the Cartesian coordinates. We define a coordi- 
nate transformation tha t  aligns the leading and trailing edges with coordinate lines. For 
points on the wing, we let 

(A-83) 

t=t 

where XLE(y) is the x coordinate of the leading edge as a function of the spanwise variable y 
and So) is the semichord. We consider a more general transformation 

3 

then 

Vlx = V I E E X  

The differential equation becomes 

(A-84) 

(A-85) 

(A-86) 
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To express the equation in conservation form, we consider 

Since x = x(E,y) differentiation with respect to x and y yields 

1 = = x c E x  or E x  = 1 /XE 

0 = x $ y + x q  or E, = - X q / X c  

Hence 

a (.> = ; (-xq) = -xtq 
at Ex 

(A-88a) a 
(A-88b) 0 

(A-89) 

a i  a 
a7 Ex 
- (-) = & (XJ = XElr 

When the two equations (A-88) and (A-89) are combined in equation (A-86), the first terms on 
the right-hand side of' equation (A-87)cancel and equation (A-86) becomes 

(A-90) 

Then the differential equation takes the form 

[(i + G2)71E]E + (FP11)9+ (FV1r)r 

+ (Gv~, , )~  + (Gv1Jq - 2iuvlE/~ + u*Fvl/~ = 0 
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A.3.2 The Derivation of the Difference Equations 

e 
a 
a 
a 
a 

We now express the differential equation in difference form, following the notation of Reference 
7 for the coefficients. For the first term, we have for elliptic points 

(A-92) 

and for hyperbolic points 

where 

ci = l / [ ( x i + l  - x;-I)(Xi+I - x i ) ]  

and 

dj = l / [ ( X ; + I  - x;-I)(xj - x ; - I ) ]  

Following the procedure in the AD1 method, we combine the two procedures and obtain 

(A-93b) 

(A-94a) 

+D1& [ ~ ; - 1 f i ; - 1 / 2 j k  ( V U k - V ; - l j k ) - d ; - l i i - ~ / i ? j k  ( ~ i - 1 j k - ~ i - 2 j k ) ]  

The variables D2 and D1X are zero or one for elliptic or hyperbolic points to select the appropriate 
operator. For a shock passing between points ( i , j , k )  and ( i +  l , j , k ) ;  

(A-94b) 

For the second term, we write 

(A-95) 
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e For the remaining terms, we have 

(A-96) 

0 (A-97) 

(A-98) e 

At the shock point, we use the operator defined in Reference 7. Thus 

We combine these three operators in the form 

(A-102) 

(A-103) 0 
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where the coefficients are listed in the table below 

chk I chk2 Chk3 chk4 

Elliptic - Cl; 0 c1;- 4; 4; 0 

Shock point - l/AE - l/A[ + 1/AE + l/AE a 
Hyperbolic 0 a 
where a AE = E ; + l  + E ;  - E ; - 1  - E ; - 2  

Finally, combining equations (A-94) through (A-1031, we obtain the following difference equation 

D 1 X k  [ c ; - l f i ; - l / a k  ( p i j k - p i - l j k )  - d i - l f i i - 3 / 2  ( p i - I j k - p i - 2 j k ) l  

+ U ~ F ~ ~ ~ ~ / ( ~ E )  = 0 
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(A-104) 



In figure 1, we illustrate the labeling of the coefficients of equation (A-104). With this labeling, the 
difference equation takes the form 

Combining all like terms in equation (A-103), we obtain for the coefficients 

(A-105) 

(A-106) 

A.3.3 Boundary Conditions on the Mesh Boundary 

On the left mesh boundary, we apply the outgoing wave boundary conditions used in References 3 to 
8. Thus, on x=(xl + x2)/2, we have 
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e 

e 
e i, j ,  k - 1 

Figure 23. Definition of the Coefficients for the Finite Difference Operator 
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Since tX = 1/F, we obtain for the difference form of equation (A-107) 

Q2ik-Ql ik  - i u m 3 , , j . p 2 j k + p I i k  = 0 
1 - M  2 E Z - E l  

or 

where 

and 

Similarly, on the downstream boundary we have 

iwM 
QI&X + 1+M = O 

In difference form, this becomes for i = i,, - 1 

or 

Introducing similar notation leads to 

- 
pi,&'k - cK2jpim,- Ijk 

e 
(A-112) 
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where 

CKV = ( - cKZj) /( + cK2j) (A-113) 

C K ~  = ioM.AE;Fjrn,_,,,,/[2(1 +M)] 

= 0, we apply the symmetry condition On the line of symmetry, y = 

V IY = VI? - 0 
In difference form, this becomes 

p i l k  = (bi3k (A-114) 

where j = 2 is the plane of symmetry and leading and trailing edges are turned normal to the plane 
y = y(2) = 0. 

At the outboard spanwise mesh boundary, y = O;.,, + yjrnax - 1)/2, we apply the outgoing wave-type 
boundary conditions in the form 

or 

We select a mapping so that = 0. Hence, for j = j,,, - 1, we have for the difference equation 

This may be written as 

where 

- 
(oij+ lk = cK3 v i j k  

cK3 = ( l  -cK3)/(1 +cK3) 

(A-115) 

(A-116) 
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On the lower boundary where E = (21 + E Z ) / ~ ,  we have 

which leads to 

where 

&I = 22 -21 

Similarly, on the upper boundary where z = (zk,,- 1 + zk,, )/2, we have 

or 

where 

0 
(A-117) 

(A-118) 

(A- 1 19) 

(A-120) 

We now apply the boundary conditions on the mesh boundaries to the difference equations. On the 
left boundary x = (xl + xz)/2, the term 

0 
e 
0 
0 
0 
e 

is replaced by 
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then these two coefficients are modified by 

CIN(k) = CIN(k) + CK1. J -  1 .CFORIN(k) 

CFORIN(k) = 0 

Similarly, CFOR (k) * $auk is replaced by CFOR (k) * CKlj'pW 

and the coefficients are modified by 

DIAG(k) = DIAG(k) + c K ~ ,  * CFOR(k) 

CFOR(k) = 0 

On the plane of symmetry we have, for j = 2, 

p i l k  = 'Pi3& 

and the coefficients are modified by 

COUT(k) = COUT(k) + CIN(k) 

(A-121) 

(A-122) 

(A-123) 

(A-124) 

CIN(k) = 0 

On the boundary outboard of the wing, we have for j = j , ,  - 1 

and the coefficients are modified by 

DIAG(k) = DIAG(k) + EK3 * COUT(k) 

COUT(k) = 0 

Similarly, on the right, downstream boundary, we substitute 

- 
Qim&x - - CK2jqimax - Ijk 

and modify the coefficients by 

DIAG(k) = DIAG(k) + EK2j  * CAFT(k) 

CAFT(k) = 0 

cIN(k) = CIN(k) + CK2j * CAFTIN(k), 
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(A-125) 

(A- 12 6 )  

(A-127) 

j f 2  



CAFTIN(k) = 0 

COUT(k) = COUT(k) + CK2j * CAFTO(k), j +jm, - 1 

CAFTO(k) = 0 

On the lower boundary for z = (zl + z2)/2 and k =2,  we have similar conditions, namely, 

- 
vijl = cK4 9ij2 

and the coefficients are modified by 

DIAG(2) = DIAG(2) + CK4 *SUB(2) 

SUB(2) = 0 

Similarly, for the upper boundary we obtain 

(A-128) 0 

(A-129) 

- 

(A-130) 

0 (A-131) ' 

SUPER(k,,, - 1) = 0 

A.3.4 Wake Boundary Conditions 

The condition that the pressure be continuous across the wake is given by 

Acp, + iwAq = 0 (A-132) 

where A q  is the jump in unsteady potential across the wake. This may be integrated to yield 

&i - - Apil+l  ex^( -iuc~,-xi,+,,) (A-133) 

We express the argument 

ARG = --w ( x , - x ; , + ~ )  (A-134) 

a4 



a 

a 
in terms of the variable t .  Thus, for the downstream region for 5 > 1, we have from equation (A-7) 
in the section on the coordinate transformation 

where we have chosen X,, = tm,. For the trailing-edge point i, + 1 from equation (A-101, we obtain 

and for the general point x 

Thus the argument in equation (A-134) finally takes the form 

To satisfy the Kutta conditions at 4 = t i l ,  we set the pressure jump at the trailing edge equal to zero, 
i.e., from equation (A-1321, 

Ap,, + i ~ . A p l  = 0 

which in the transformed grid variables becomes 

ApIt + i u F - A p l  = 0 (A-138) 
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This may be written more conveniently as 

&i, + 1, = cKcl ' Apilj + CKc2 ' A(Oit - l j  (A-139) 

where 

(A-140) 

& j j  = (oijk,+ 1 - Pijk,,, - cSI('J'ijk,,,+ 2 - 'J'iik,+ 1) 

- cS2( - pijk,,, - (Cijkm- I )  - (dslFij U -k &ZF;) 

- 
In general, the jump in potential across the airfoil is seen from Reference 1 to be given by 

A9jj = 9 j j k m +  I - p i j k m  - C S l ( p i j k m + 2  - p i j k m +  I )  

(A-141) 
U L - cS2(pijk,,,  - pijk,,,- 1) - (&lFi j  + d S 2 F i j )  

where 
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Combining like terms leads to 

(A-143) 

(A-144). 

(A-145) 
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For the value of k below the wing surface k = k,, we add for the ith column for i> i l  + 1, 0 
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Finally, we set E, = - exp (- io(q - xi- ,)) and for k = k,, i> i ,  + 1 

RHS(KM) = RHSL * E, 

WAKll = w K 1 1  * E, 

WAKl2 = W ~ 1 2  E, 

WAK13 = WK13 * E, 

WAK14 = WK14 E, 

WAK21 = W ~ 2 l  * E, 

WAK22 = WKZZ * E, 

WAK23 = WK23 * E, 

WAK24 = WK24 E, 

Similarly, for k = k, + 1 and i > i ,  + 1 ,  

RHS(KMP) = RHSU 

(A-150) 

(A-151) 
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a 
0 
0 
0 

0 
e 
e 
a 
0 
0 
0 
0 
0 
e 

(A-153) 

e 



A. 4 THE COEFFICIENT MATRIX AND SOLUTION PROCEDURE 

The resulting set of finite difference equations may be written in the matrix form as Ax = B. 
The coefficient matrix, A, for a rectangular planform is a sparse asymmetric matrix with 
coefficients arranged along the principal diagonal, four bands of unit width above the diagonal, 
and five bands of unit width below the diagonal. The number of nonzero elements in any row is 
nine for a rectangular planform. The actual bandwidth of the system is large, being 
NS*(JMAX-2)*KXB+2*KXB, where NS is 2 for subsonic and 3 for mixed flow, and KXB is 
KMAX-2 for a full asymmetric flow and KMAXI2-1 for symmetric flow. For swept wings, two 
more bands are added both above and below the diagonal, the number of nonzero elements in a row 
is 13, and the system bandwidth is increased by 2*KXB. There are additional terms due to the 
wake that lie outside the banded system described above, and these are the same for both 
rectangular and swept planforms. The right-hand-side matrix, B, includes the wing boundary 
conditions. 

The general solution procedure developed for this report stores the coefficients in blocks using 
out-of-core storage. The basic banded set of coefficients is stored in A. The additional coefficients in 
A due to the wake are stored as part of B. The resulting system is solved using LU decomposition, 
and a Sherman-Morrison update procedure is then used to include the additional wake terms and 
thus obtain the complete solution (see ref. 24). 

91 


